×
中国惯性技术学报

计算机软件及计算机应用论文_基于CNN-Mogrifie

文章摘要:随着传感器、微电子等技术的发展,通过可穿戴式传感器对人体的运动模式进行识别,具有广泛的应用价值,如何提高识别的准确率,具有重要研究意义。考虑到人体下肢运动的特点,本文提出了一种基于CNN和Mogrifier LSTM的人体运动模式识别算法,先利用CNN提取原始数据的局部相关特征,再使用Mogrifier LSTM代替全连接层,挖掘局部相关特征的前后依赖关系,对行走、跑步、上楼梯、下楼梯、上坡和下坡六种常见的运动模式进行识别。实验结果表明,相比于传统LSTM算法,Mogrifier LSTM的准确率提升了1.03%,将CNN和Mogrifier LSTM相结合后,准确率进一步提升了1.17%,达到了98.18%,证明了算法的优越性。

文章关键词:

作者单位: 

论文分类号:TP391.41;TP183

上一篇:数学论文_求解伪单调变分不等式问题的惯性收缩
下一篇:没有了

Top